Cap Verde

The Cape Verde Atmospheric Observatory (CVAO), at Calhau on the island of São Vicente. The CVAO is a World Meteorological Organisation-Global Atmospheric Watch (WMO-GAW) global station and provides quality-assured atmospheric data.

An Aero-Laser AL5001 instrument for the measurement of carbon monoxide mixing ratios in background air has been installed at the National Centre for Atmospheric Science (NCAS) Cape Verde Atmospheric Observatory (CVAO) since October 2006 and there are no plans for the measurements to stop in the foreseeable future. At the University of York we also have an AL5002 instrument which is used for shorter deployments (e.g. for NAMBLEX and OP3 and has in the past been used as a back-up for both the Cape Verde system and the FAAM aircraft system. 

The aim of the project is to monitor the background concentration of CO (along with other trace gases) in the tropical marine boundary layer, to gain increased understanding of the oxidation capacity in this region.  The CVAO site is a “Global” Global Atmospheric Watch site which means that it meets the requirements to provide data required to address environmental issues of global scale and importance.

Some of these requirements include the following:

  1. The station location is regionally representative and is normally free of the influence of significant local pollution sources.
  2. There are adequate power, air conditioning, communication and building facilities to sustain long term observations with greater than 90% data capture (i.e. <10% missing data). 
  3. The GAW CO observation made is of known quality and linked to the GAW CO Primary Standard. 
Inside the CVAO station.

CO data is presently submitted in near-real-time to the MACC (Monitoring Atmospheric Composition and Climate) project which is part of the European GMES (Global Monitoring for Environment and Security) programme. The concentration of CO in the marine boundary layer is mainly controlled by the hydroxyl radical (OH) concentration. Deviations occur as a result of long-range transport from more polluted areas and the occasional biomass burning input from the Canary Islands.

Instrument rack containing an AL5001 CO-monitor.


Publication single view


Title: Seasonal characteristics of tropical marine boundary layer air measured at the Cape Verde Atmospheric Observatory
Authors: L.J. Carpenter, Z.L. Fleming, K.A. Read, J.D. Lee, S.J. Moller, J. Hopkins, R. Purvis, A.C. Lewis, K. Müller, B. Heinold, H. Herrmann, K. Wadinga Fomba, D. van Pinxteren, C. Müller, I. Tegen, A. Wiedensohler, T. Müller, N. Niedermeier, E.P. Achterberg, M.D. Patey, E.A. Kozlova, M. Heimann, D.E. Heard, J.M.C. Plane, A.S. Mahajan, H. Oetjen, S. Vaughan, S.R. Arnold, T. Ingham, D. Stone, .L. Whalley, M. Evans, M.J. Pilling, R.J. Leigh, P.S. Monks, A. Karunaharan, J. Tschritter, D. Pöhler, U. Frieß, R. Holla, L. Mendes, H. Lopez, B. Faria, A.J. Manning and D.W.R. Wallace
Journal: J. Atmos. Chem.
Year: 2010
Volume: 67
Pages: 87
DOI: 10.1007/s10874-011-9206-1
Web URL:
Abstract: <div class="normal">Observations of the tropical atmosphere are fundamental to the understanding of global changes in air quality, atmospheric oxidation capacity and climate, yet the tropics are under-populated with long-term measurements. The first three years (October 2006–September 2009) of meteorological, trace gas and particulate data from the global WMO/Global Atmospheric Watch (GAW) Cape Verde Atmospheric Observatory Humberto Duarte Fonseca (CVAO; 16° 51′ N, 24° 52′ W) are presented, along with a characterisation of the origin and pathways of air masses arriving at the station using the NAME dispersion model and simulations of dust deposition using the COSMO-MUSCAT dust model. The observations show a strong influence from Saharan dust in winter with a maximum in super-micron aerosol and particulate iron and aluminium. The dust model results match the magnitude and daily variations of dust events, but in the region of the CVAO underestimate the measured aerosol optical thickness (AOT) because of contributions from other aerosol. The NAME model also captured the dust events, giving confidence in its ability to correctly identify air mass origins and pathways in this region. Dissolution experiments on collected dust samples showed a strong correlation between soluble Fe and Al and measured solubilities were lower at high atmospheric dust concentrations. Fine mode aerosol at the CVAO contains a significant fraction of non-sea salt components including dicarboxylic acids, methanesulfonic acid and aliphatic amines, all believed to be of oceanic origin. A marine influence is also apparent in the year-round presence of iodine and bromine monoxide (IO and BrO), with IO suggested to be confined mainly to the surface few hundred metres but BrO well mixed in the boundary layer. Enhanced CO2 and CH4 and depleted oxygen concentrations are markers for air-sea exchange over the nearby northwest African coastal upwelling area. Long-range transport results in generally higher levels of O3 and anthropogenic non-methane hydrocarbons (NMHC) in air originating from North America. Ozone/CO ratios were highest (up to 0.42) in relatively fresh European air masses. In air heavily influenced by Saharan dust the O3/CO ratio was as low as 0.13, possibly indicating O3 uptake to dust. Nitrogen oxides (NOx and NOy) show generally higher concentrations in winter when air mass origins are predominantly from Africa. High photochemical activity at the site is shown by maximum spring/summer concentrations of OH and HO2 of 9×106 molecule cm−3 and 6×108 molecule cm−3, respectively. After the primary photolysis source, the most important controls on the HOx budget in this region are IO and BrO chemistry, the abundance of HCHO, and uptake of HOx to aerosol.

Back to the list view